Math 9 Honours Ch1 Review:

Rational & Irrational Numbers Square Roots and Mixed Radicals **Factoring Trinomials BEDMAS** with Irrational numbers

Prime Factorizations Conversion with Decimals and Fractions **Divisibility Rules**

Note: For the chapter test, please review all the assignments given through out the chapter. Calculators are not allowed

- 1. What are the properties of a rational number.
- 2. Provide 3 or more examples of an Irrational number
- 3. How do you determine that a value is a perfect square/cube from it's prime factorization
- 4. Evaluate the following without a calculator. Show your steps. Give your answer in exact form:

i)
$$0.8 \div 0.\overline{142875} - 0.375$$

ii)
$$0.\overline{9} + 0.\overline{12} + 0.\overline{123}$$

$$0.8 \div 0.\overline{142875} - 0.375$$
 ii) $0.\overline{9} + 0.\overline{12} + 0.\overline{123}$ iii) $0.\overline{1} \div 0.\overline{2} + 0.\overline{72} \times 0.375$

- 5. Given that 1/13 = 0.076... and 2/13 = 0.153, then what is the 100^{th} digit in the decimal expansion of 7/13?
- 6. Convert the following number to a fraction: i) $0.0\overline{773}$ ii) $0.023\overline{445}$
- 7. What is the sum of $0.00\overline{883}$ and $0.03\overline{25}$. Write your answer as a fraction in lowest terms.
- 8. Given that "x' is an integer and $N = \sqrt{55 x^2}$. If "N" is a rational number then how many possible values of "x" are there?
- 9. Given that $N = \frac{\sqrt{3^3 \times 4^5 \times 5^3 \times 11^3}}{\sqrt{3^3 \times 4^5 \times 5^2 \times 11^d}}$. If "N" is a rational number, then what is the lowest value of
- 10. Arrange the following from least to greatest: $5\sqrt[3]{7}$, $\sqrt{33}$, $\sqrt[3]{200}$, $\sqrt[4]{1210}$, $2.5\sqrt{6}$

- 11. Convert the following to mixed radicals: $\sqrt{10!}$
- 12. If $a\sqrt[3]{b} = \sqrt[3]{20!}$, then what is the lowest value of a+b?
- 13. $\sqrt{a} \times \sqrt[3]{b} = \sqrt[p]{a^m \times b^n}$, what are the lowest possible values of "m", "n", and "p"?
- 14. Given that $N = 2^3 \times 4^3 \times 5^3 \times 6^4$, how many factors does "N" have?
- 15. Using the value of "N" from above, how many factors does "N" have that are perfect squares?
- 16. Given that $N = (x^2 13x + 36)(x + 3)$ and "N" is a perfect square. What are all the possible values of "x"?
- 17. Given that N = 2(x-1)(x+2)(3x-1) and "N" is a perfect square. What are all the possible values of "x"?
- 18. When given the prime factorization with a missing term, what is the value of the term required to create a perfect square/cube
 - a) Given that "N" is an integer, what is the lowest value of "k" if "k" is an positive integer?

$$N = \sqrt{32k} \qquad N = \sqrt{3^3 6^3 7^1 (k+1)} \qquad N = \sqrt[3]{5^2 7^3 (k-1)}$$

b) Challenge: Given that "N" is a perfect square, what is the lowest integer value of "k" if $k \ge 1$. (Note: "N" needs to be a perfect square, not an integer)

$$N = \sqrt{32k} \qquad N = \sqrt{3^3 6^3 7^1 (k+1)}$$

c) what is the lowest integer value of "k" if $k \ge 1$, such that "N" is a perfect cube

$$N = (30k + 5)(15k + 4)$$

19. Prove that sum of $1+$	$3+5+\ldots +13+15+17+\ldots$	(2n+1)	will always be a perfect square.	Note: "n" is a
natural number.				

20. How many positive integers less than 1000 is equal to the product of three different primes?

The product of N consecutive four-digit positive integers is divisible by 2010^2 . What is the least possible value of N?

If
$$x^2yz^3 = 7^4$$
 and $xy^2 = 7^5$, then xyz equals

(A) 7 (B) 7^2 (C) 7^3 (D) 7^8 (E) 7^9

- 23. Solve problems involving divisibility rules:
 - a) Given that N=2389b and is divisible by 12. What is the lowest value for "b"

- A five-digit positive integer is created using each of the odd digits 1, 3, 5, 7, 9 once so that
 - the thousands digit is larger than the hundreds digit,
 - the thousands digit is larger than the ten thousands digit,
 - the tens digit is larger than the hundreds digit, and
 - the tens digit is larger than the units digit.

Find as many number that satisfy these properties:

23. Find a number that contains all the digits from 0 to 9 (repetitions allowed) such that when you multiply it with any number from 1 to 18, the product will also contain digits from 0 to 9 (repetitions allowed and can be in any order). Hint the number is a big value: